
Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

141

Binary Search and Binary Search Trees

18	� Binary Search and Binary Search
Trees

18.1	 Introduction

Binary search is a much faster alternative to sequential search for sorted lists. Binary search is closely
related to binary search trees, which are a special kind of binary tree. We will look at these two topics
in this chapter, studying the complexity of binary search, and eventually arriving at a specification for
a BinarySearchTree class.

18.2	 Binary Search

When people search for something in an ordered list (like a dictionary or a phone book), they do not
start at the first element and march through the list one element at a time. They jump into the middle
of the list, see where they are relative to what they are looking for, and then jump either forward or
backward and look again, continuing in this way until they find what they are looking for, or determine
that it is not in the list.

Binary search takes the same tack in searching for a key in a sorted list: the key is compared with the
middle element in the list. If it is the key, the search is done. If the key is less than the middle element,
then the process is repeated for the first half of the list. If the key is greater than the middle element, then
the process is repeated for the second half of the list. Eventually, either the key is found in the list, or the
list is reduced to nothing (the empty list), at which point we know that the key is not present in the list.

This approach naturally lends itself to a recursive algorithm, which we show in Ruby below.

def rb_search(array, key)
 return nil if array.empty?
 m = array.size/2
 return m if key == array[m]
 return rb_search(array[0…m],key) if key < array[m]
 index = rb_search(array[m+1̤-1],key)
 index ? m+1+index : nil
end

Figure 1: Recursive Binary Search

Search algorithms traditionally return the index of the key in the list or -1 if the key is not found; in
Ruby we have a special value for undefined results, so we return nil if the key is not in the array. Note
that although the algorithm has the important precondition that the array is sorted, checking this would
take far too much time, so it is not checked.

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

142

Binary Search and Binary Search Trees

The recursion stops when the array is empty and the key has not been found. Otherwise, the element at
index m in the middle of the array is checked. If it is the key, the search is done and index m is returned;
otherwise, a recursive call is made to search the portion of the list before or after m depending on whether
the key is less than or greater than array[m].

Although binary search is naturally recursive, it is also tail recursive. Recall that a tail recursive algorithm
is one in which at a recursive call is the last action in each activation of the algorithm, and that tail
recursive algorithms can always be converted to non-recursive algorithms using only a loop and no stack.
This is always more efficient and often simpler as well. In the case of binary search, the non-recursive
algorithm is about equally complicated, as the Ruby code in Figure 2 below shows.

def binary_search(array, key)
 lb, ub = 0, array.size-1
 while (lb <= ub)
 m = (ub+lb)/2
 return m if key == array[m]
 if key < array[m]
 ub = m-1
 else
 lb = m+1
 end
 end
 return nil
end

Figure 2: Non-Recursive Binary Search

To analyze binary search, we will consider its behavior on lists of size n and count the number of
comparisons between list elements and the search key. Traditionally, the determination of whether the
key is equal to, less than, or greater than a list element is counted as a single comparison even though
it may take two comparisons in most programming languages.

Binary search does not do the same thing on every input of size n. In the best case, it finds the key in
the middle of the list, doing only a single comparison. In the worst case, the key is not in the list, or
is found when the sub-list being searched has only one element. We can easily generate a recurrence
relation and initial conditions to find the worst case complexity of binary search, but we will instead use
a binary search tree to figure this out.

Suppose that we construct a binary tree from a sorted list as follows: the root of the tree is the element
in the middle of the list; the left child of the root is the element in the middle of the first half of the
list; the right child of the root is the element in the middle of the second half of the list, and so on. In
other words, the vertices of the binary tree are filled according to the order in which the values would
be encountered during a binary search of the list. To illustrate, consider the binary tree in Figure 3 made
from <a, b, c, d, e, f, g, h, i, j, k, l, m> in the way just described.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

143

Binary Search and Binary Search Trees

g

d

j

e

a

ib l

hc f

k

m

 Figure 3: A Binary Tree Made from a List

A tree built this way has the following interesting properties:

•	 It is a full binary tree so its height is always floor(lg n).
•	 For every vertex, every element in its left sub-tree (if any) is less than or equal to the

element at the vertex, and every element in its right sub-tree (if any) is greater than or equal
to the element at the vertex.

•	 If we traverse the tree inorder, we visit the vertices in the order of the original list, that is, in
sorted order.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

144

Binary Search and Binary Search Trees

The first property tells us the worst case performance of binary search because a binary search will visit
each vertex from the root to a leaf in the worst case. The number of vertices on these paths is the height
of the tree plus one, so W(n) = floor(lg n) + 1. We can also calculate the average case by considering each
vertex equally likely to be the target of a binary search and figuring out the average length of the path
to each vertex. This turns out to be approximately lg n for both successful and unsuccessful searches.
Hence, on average and in the worst case, binary search makes O(lg n) comparisons, which is very good.

18.3	 Binary Search Trees

The essential characteristic of the binary tree we looked at above is the relationship between the value at a
vertex and the values in its left and right sub-trees. This is the basis for the definition of binary search trees.

Binary search tree: A binary tree whose every vertex is such that the value at each vertex is
greater than the values in its left sub-tree, and less than the values in its right sub-tree.

Binary search trees are an important data type that retains the property that traversing them in order
visits the values in the vertices in sorted order. However, a binary search tree may not be full, so its
height may be greater than floor(lg n). In fact, a binary search tree whose every vertex but one has only
a single child will have height n-1.

Binary search trees are interesting because it is fast both to insert elements into them and fast to search
them (provided they are not too long and skinny). This contrasts with most collections, which are usually
fast for insertions but slow for searches, or vise versa. For example, elements can be inserted into an
(unsorted) LinkedList quickly, but searching a LinkedList is slow, while a (sorted) ArrayList can be
searched quickly with binary search, but inserting elements into it to keep it sorted is slow.

The binary search tree of T ADT has as its carrier set the set of all binary search trees whose vertices
hold a value of type T. It is thus a subset of the carrier set of the binary tree of T ADT. The operations
in this ADT includes all the operations of the binary tree ADT, with the addition of a precondition on
buildTree(), shown below. The list below also includes two operations added to the binary search tree ADT.

buildTree(v,tl,tr)—Create and return a new binary tree whose root holds the value v and whose
left and right subtrees are tl and tr. Its precondition is that v is greater than any value held in
tl and less than any value held in tr.

add(t,v)—Put v into a new vertex added as a leaf to t, preserving the binary search tree property,
and return the resulting binary search tree. If v is already in t, then t is unchanged.

remove(t,v)—Remove the vertex holding v from t, if any, while preserving the result as a binary
search tree, and return the resulting binary search tree.

This ADT is the basis for a BinarySearchTree class.

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

145

Binary Search and Binary Search Trees

18.4	 The Binary Search Tree Class

A BinarySearchTree is a kind of BinaryTree, so the BinarySearchTree class is a sub-class of
BinaryTree. Its constructor needs a precondition to make sure that trees are constructed properly. It
can also override the contains() operation to be more efficient. Otherwise, it only needs to implement
the three operations pictured in Figure 4 below.

 Figure 4: The BinarySearchTree Class

The add() operation puts an element into the tree by making a new child node at a spot that preserves
the binary search tree’s integrity. If the element is already in the tree, then the element passed in replaces
the value currently stored in the tree. In this way, a new record can replace an old one with the same
key (more about this in later chapters).

The get() operation returns the value stored in the tree that is “equal” to the element sent in. It is
intended to fetch a record from the tree with the same key as a dummy record supplied as an argument,
thus providing a retrieval mechanism (again, we will discuss this more later).

The contains?() and get() operations both search the tree by starting at its root and moving down
the tree, mimicking a binary search. If the desired value is at the root (the best case), this requires only
one comparison, so B(n) is in O(1). In the worst case, when the tree is effectively a list, this requires
O(n) comparisons. Empirical studies have shown that when binary search trees are built by a series of
insertions of random data, they are more or less bushy, and their height is not too much more than lg
n, so the number of comparisons is in O(lg n) on average.

The add() operation takes a path down the tree to the spot where the new element would be found
during a search and adds a new leaf node to hold it. This again requires O(1) comparisons in the best case,
O(lg n) comparisons in the average case, and O(n) comparisons in the worst case. Finally, the remove()
operation must first find the deleted element and then manipulate the tree to remove the node holding
the element in such a way that it is preserved as a binary search tree. This operation also takes O(1) time
in the best case, O(lg n) time in the average case, and O(n) time in the worst case.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

146

Binary Search and Binary Search Trees

Binary search trees thus provide very efficient operations except in the worst case. There are several
kinds of balanced binary search trees whose insertion and deletion operations keep the tree bushy rather
than long and skinny, thus eliminating the poor worst case behavior. We will not study balanced binary
search trees.

18.5	 Summary and Conclusion

Binary search is a very efficient algorithm for searching ordered lists, with average and worst case
complexity in O(lg n). We can represent the workings of binary search in a binary tree to produce a full
binary search tree. Binary search trees have several interesting properties and provide a kind of collection
that features excellent performance for insertion, deletion, and search, except in the worst case. We can
also traverse binary search trees inorder to access the elements of the collection in sorted order.

18.6	 Review Questions

1.	 Why can recursion be removed from the binary search algorithm without using a stack?
2.	 If a binary tree is made from an ordered list of 100 names by placing them into the tree to

mimic a binary search as discussed in the text, what is the height of the resulting tree?
3.	 Approximately how many comparisons would be made by binary search when searching a

list of one million elements in the best, worst, and average cases?
4.	 What advantage does a binary search tree have over collections like ArrayList and

LinkedList?

Enhance your career opportunities
We offer practical, industry-relevant undergraduate and postgraduate degrees in central London

› Accounting and finance › Global banking and finance
› Business, management and leadership › Luxury brand management
› Oil and gas trade management › Media communications and marketing

Contact us to arrange a visit
Apply direct for January or September entry

T +44 (0)20 7487 7505 E exrel@regents.ac.uk W regents.ac.uk

http://bookboon.com/
http://bookboon.com/count/advert/10a6ab04-ac0d-4b6b-a275-a2d2009406fa

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

147

Binary Search and Binary Search Trees

18.7	 Exercises

1.	 A precondition of binary search is that the searched array is sorted. What is the complexity
of an algorithm to check this precondition?

2.	 Write and solve a recurrence relation for the worst case complexity of the binary search
algorithm.

3.	 Interpolation search is like binary search except that it uses information about the
distribution of keys in the array to choose a spot to check for the key. For example, suppose
that numeric keys are uniformly distributed in an array and interpolation search is looking
for the value k. If the first element in the array is a and the last is z, then interpolation
search would check for k at location (k-a)/(z-a) * (array.length-1). Write a non-recursive
linear interpolation search using this strategy.

4.	 Construct a binary search tree based on the order in which elements of a list containing the
numbers one to 15 would be examined during a binary search, as discussed in the text.

5.	 Draw all the binary search tree that can be formed using the values a, b, and c. How many
are full binary trees?

6.	 The BinarySearchTree add() operation does not attempt to keep the tree balanced.
It simply work its way down the tree until it either finds the node containing the added
element or finds where such a node should be added at the bottom of the tree. Draw the
binary search tree that results when values are added to the tree in this manner in the order
m, w, a, c, b, z, g, f, r, p, v.

7.	 Write the add() operation for the BinarySearchTree class using the strategy explained in
the last exercise.

8.	 Write the remove() operation for the BinarySearchTree class. This operation must
preserve the essential property of a binary search tree, namely that the value at each node is
greater than or equal to the values at the nodes in its left sub-tree, and less than or equal to
the values at the nodes in its right sub-tree. In deleting a value, three cases can arise:
•	 The node holding the deleted value has no children; in this case, the node can simply be

removed.
•	 The node holding the deleted value has one child; in this case, the node can be removed

and the child of the removed node can be made the child of the removed node’s parent.
•	 The node holding the deleted value has two children; this case is more difficult. First,

find the node holding the successor of the deleted value. This node will always be the
left-most descendent of the right child of the node holding the deleted value. Note that
this node has no left child, so it has at most one child. Copy the successor value over the
deleted value in the node where it resides, and remove the redundant node holding the
successor value using the rule for removing a node with no children or only one child
above.

a)	 Use this algorithm to remove the values v, a, and c from the tree constructed in exercise
6 above.

b)	 Write the remove() operation using the algorithm above.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

148

Binary Search and Binary Search Trees

18.8	 Review Question Answers

1.	 Recursion can be removed from the binary search algorithm without using a stack because
the binary search algorithm is tail recursive, that is, it only calls itself once as its last action
on each activation.

2.	 If a binary tree is made from an ordered list of 100 names by placing them into the tree to
mimic a binary search as discussed in the text, the height of the resulting tree is floor(lg 100)
= 6.

3.	 When searching a list of one million elements in the best case, the very first element
checked would be the key, so only one comparison would be made. In the worst case,
floor(lg 1000000)+1 = 20 comparison would be made. In the average case, roughly
floor(lg 1000000) = 19 comparison would be made.

4.	 An ArrayList and a LinkedList allow rapid insertion but slow deletion and search, or rapid
search (in the case of an ordered ArrayList) but slow insertion and deletion. A binary
search tree allows rapid insertion, deletion, and search.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

